

OCR (A) Chemistry A-level Topic no 3.1.1 - Periodicity

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

How are the elements arranged in a periodic table?

How are the elements arranged in a periodic table?

They are arranged in the order of increasing atomic numbers

What is a period on a periodic table?

What is a period on a periodic table?

The horizontal rows in the periodic table

What is a group on a periodic table?

What is a group on a periodic table?

The vertical columns

What is meant by periodicity?

What is meant by periodicity?

The repeating trends in chemical and physical properties

What change happens across each period?

What change happens across each period?

Elements change from metals to non metals

How can the electron configuration be written in short?

How can the electron configuration be written in short?

The noble gas before the element is used to abbreviate

E.g Li \rightarrow 1s²2s¹ ; Li \rightarrow [He] 2s¹

Define first ionisation energy

Define first ionisation energy

The energy required to remove one electron from each atom in one mole of the gaseous element to form one mole of gaseous 1+ ions

Write an equation for the first ionisation energy of magnesium

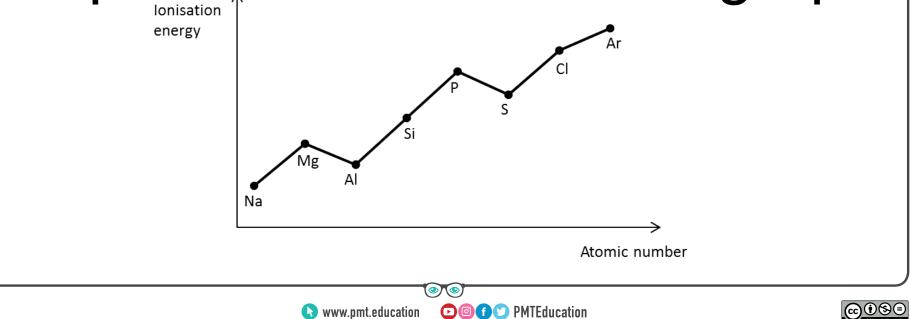
D G G S PMTEducation

Write an equation for the first ionisation energy of magnesium

$Mg (g) \rightarrow Mg+ (g) + e-$

What are the factors that affect ionisation energy?

What are the factors that affect ionisation energy?


- Atomic radius
- Nuclear charge
- Electron shielding or screening

Explain the trend on this graph

Explain the trend on this graph

First Ionisation energy increases across period 3 because of:

- -Increased nuclear charge
- -Decreased atomic radius
- -Same electron shielding

which means more energy is needed to remove the first electron.

Dips at AI because: outer electron is in a 3p orbital, higher energy than 3s orbital \rightarrow less energy needed to remove electron

Dips at S because one 3p orbital contains two electrons \rightarrow repulsion between paired

electrons \rightarrow less energy needed to remove one

Why does first ionisation energy decrease between group 2 to 3?

DOfSPMTEducation

Why does first ionisation energy decrease between group 2 to 3?

 Decrease between 2 to 3 because in group 3 the outermost electrons are in p orbitals whereas in group 2 they are in s orbital, so the electrons are easier to be removed

Why does first ionisation energy decrease between group 5 to 6?

Why does first ionisation energy decrease between group 5 to 6?

The decrease between 5 to 6 is due to the group 5 electrons in p orbital are single electrons and in group 6 the outermost electrons are spin paired, with some repulsion. Therefore the electrons are slightly easier to remove

Does first ionisation increase or decrease between the end of one period and the start of next? Why?

Does first ionisation increase or decrease between the end of one period and the start of next? Why?

Decrease

- There is increase in atomic radius
- Increase in electron shielding

Does first ionisation increase or decrease down a group? Why?

Does first ionisation increase or decrease down a group? Why?

- Decrease
- Shielding increases \rightarrow weaker attraction
- Atomic radius increases → distance between the outer electrons and nucleus increases → weaker attraction
- Increase in number of protons is outweighed by increase in distance and shielding

What are the properties of giant metallic lattices? (4)

What are the properties of giant metallic lattices?

- High melting and boiling point
- Good electrical conductors
- Malleability
- Ductility

What is a ductile metal?

What is a ductile metal?

The metal can be made stretched. E.g Can be made into wires

What is a malleable metal?

What is a malleable metal mean?

The metal can be shaped into different forms

Describe the structure, forces and bonding in every element across period 2

DOG PMTEducation

Describe the structure, forces and bonding in every element across period 2

- Li & Be → giant metallic ; strong attraction between positive ions and delocalised electrons ; metallic bonding
- B & C \rightarrow giant covalent ; strong forces between atoms ; covalent
- N₂,O₂,F₂,Ne → simple molecular; weak intermolecular forces between molecules; covalent bonding within molecules and intermolecular forces between molecules

Describe the structure, forces and bonding in every element across period 3

DOG PMTEducation

Describe the structure, forces and bonding in every element across period 3

- Na, Mg, Al → giant metallic ; strong attraction between positive ions and delocalised electrons ; metallic bonding
- Si → giant covalent ; strong forces between atoms ; covalent
- P₄, S₈, Cl₂, Ar → simple molecular; weak intermolecular forces between molecules; covalent bonding within molecules and intermolecular forces between molecules

PMTEducation